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ABSTRACT

Using TMPZnCl 3 LiCl as a kinetically highly active base, nitriles and esters undergo a Pd-catalyzedR-arylation under mild conditions. Remarkably,
in the case of R,β- or β,γ-unsaturated nitriles, a regioselective γ-arylation or a γ-alkenylation is observed.

The Pd-catalyzed arylation of carbonyl derivatives and
related functional groups has significantly extended the
scope of enolate chemistry.1 Several bases have been used

to generate R-metalated nitriles and carbonyl derivatives.
These metal enolates produce, after reductive elimination
of an intermediate arylpalladium(II), various R-arylated
carbonyl compounds.2-5 Hagadorn has reported the use
of TMP2Zn to deprotonate amides and esters. He†Ludwig-Maximilians-Universit€at.

‡Duquesne University.
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performed Pd-catalyzed cross-couplings using Pd2dba3
and tBu3P as catalytic system.6 The choice of the appro-
priate base, the palladium catalyst, and the reaction con-
ditions is essential for obtaining high yields. Recently,
Hartwig reported silyl ketene acetals as enolate equivalents
in a new Pd-catalyzed γ-arylation of R,β-unsaturated
esters.7 In an alternative approach, Baudoin developed a
direct β-arylation of carbonyl compounds through an R-
metalation-elimination-addition sequence.8

We developed a range of LiCl-solubilized TMP-bases9

(TMP= 2,2,6,6-tetramethylpiperidyl) which directly gen-
erate functionalized organometallics ideally suited for
transition metal coupling. The bases are monomeric in
solution, bear a sterically hindered TMP-moiety coordi-
nated to LiCl, and display an exceptionally high kinetic
basicity. Contrary to less hindered amines such as iPr2NH
or (Me3Si)2NH, TMPH does not slow down Pd-catalyzed
Negishi cross-couplings.10 These bases are excellent for
deprotonating various functionalized aromatics and het-
eroaromatics. We envisioned using some of these TMP-
bases to generate metal enolates directly to improve sub-
sequent transition metal couplings. Herein, we report the
use of TMPZnCl 3LiCl

8e-h (1) for the Pd-catalyzed R-
arylation of nitriles and esters as well as a new γ-arylation
and γ-alkenylation of unsaturated nitriles.
Exploratory optimizations revealed a delicate depen-

dence on the nature of the base, palladium source, and
ligand for sequential deprotonation-arylations. Opti-
mally, treating a benzylic nitrile such as 2a with
TMPZnCl 3LiCl (1: 1.5 equiv, THF, 25 �C, 10 min)
followed by the addition of Pd(OAc)2 (2 mol %), SPhos
ligand11 (4 mol %), and ethyl 4-bromobenzoate (3a: 0.8
equiv, 50 �C, 4 h) produces the mono-R-arylated product
4a as the sole product in 83% yield (Table 1, entry 1). This
procedure proved to be general and is applicable to
benzylic nitriles bearing either an electron-withdrawing
group (2a,b) or an electron-donating group (2c). Conse-
quently, the reaction with various aryl bromides (3a-c)
affords the arylated nitriles 4a-e in 79-89% yield
(Table 1).
A competitive bis-arylation of aliphatic nitriles may

complicate the reaction outcome. Verkade has shown the
utility of a bicyclic proazaphosphatrane for selectively
performing the mono-arylation of metalated nitriles.5d

Hartwig developed a more general approach using tri-
methylsilylalkylnitriles in the presence of ZnF2 for avoid-
ing bis-arylation.5c Interestingly, by usingTMPZnCl 3LiCl
as a base, the primary aliphatic nitrile valeronitrile (2d)
undergoes a selective mono-arylation with 4-bromoaniline
(3d: 0.8 equiv, THF, 50 �C, 2 h) and Pd(OAc)2 (2 mol %),
SPhos (4mol%) yielding the aniline derivative (4f) in 74%
yield. Remarkably, a free NH2- group in the aryl bromide

(3d) is well tolerated (Table 2, entry 1). This selective
mono-arylation occurs with various functionalized aryl
and heteroaryl bromides (3a-e) furnishing the arylated
nitriles (4g-j) in 64-89% yield (Table 2, entries 2-5). As
expected, the prototypical cyclic nitrile, cyclohexanecar-
bonitrile (2e), reacts under the same conditions (Pd(OAc)2
(2 mol %), SPhos (4 mol %)) with the aryl bromides 3b,c
(0.8 equiv, 50 �C, 3 h) to afford nitriles (4k,l) efficiently in
73-92% isolated yield (Table 2, entries 6 and 7). In
contrast to previous nitrile arylations,5a-d the use of
TMPZnCl 3LiCl (1) allows cross-coupling under milder
conditions (50 �C) and with shorter reaction times. Also,

Table 1. R-Arylation of Benzylic Nitriles with TMPZnCl 3LiCl

entry 2 3 4 yield (%)a

1 2a, R1 = CO2Et 3a, R2 = CO2Et 4a (83)

2 2a, R1 = CO2Et 3c, R2 = OMe 4b (89)b

3 2b, R1 = CN 3a, R2 = CO2Et 4c (80)

4 2c, R1 = OMe 3a, R2 = CO2Et 4d (79)

5 2c, R1 = OMe 3b, R2 = CN 4e (85)

aYield of isolated analytically pure product. b 2.0 equiv of
TMPZnCl 3LiCl was used.

Table 2. R-Arylation of Aliphatic Nitriles with TMPZnCl 3LiCl

aYield of isolated analytically pure product. bThe reaction time for
this example was 26 h.
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sensitive ester and nitrile substituents are tolerated in the

aryl bromides.
Prior palladium-catalyzed arylations of primary esters

often required the sterically protected tert-butyl esters.4d-j

Under our new conditions using TMPZnCl 3LiCl (1),
arylations are readily performed with ethyl esters. Thus,
the reaction of ethyl butyrate (5a: 1.0 equiv) with
TMPZnCl 3LiCl (1: 1.5 equiv, THF, 25 �C, 10 min)
followed by the addition of Pd(OAc)2 (2 mol %), SPhos
(4 mol %), and 4-bromoanisole 3c (0.8 equiv, 25 �C, 1 h)
provides the polyfunctional arylated ester (6a) in 96%
isolated yield (Scheme 1). The presence of an ethyl ester
in the aryl bromide is also tolerated, providing that the
reaction is performed at 50 �C with 2 equiv of ethyl
butyrate (5a). With these modifications, the expected
arylated ethyl ester (6b) is isolated in 80% yield.12 Simi-
larly, the secondary ester ethyl isobutyrate (5b) undergoes
the expected cross-coupling at 50 �C giving the R-arylated
ethyl ester (6c) in quantitative yield (Scheme 1).
γ-Arylation reactions of R,β-unsaturated carbonyl com-

pounds have been well-studied for unsaturated ketone or
aldehydes.13 Only recently have γ-arylations been exam-
ined with unsaturated esters.6 Using TMPZnCl 3LiCl (1),
we have performed the first arylations of R,β- and β,γ-
unsaturated nitriles and observe an exceptionally regiose-
lective γ-arylation. Thus, the reaction of cyclohexene-1-
carbonitrile (7a: 1.0 equiv) with TMPZnCl 3LiCl (1: 2.0
equiv, THF, 25 �C, 10 min) followed by the addition of
4-bromoanisole (3c: 0.8 equiv) and the usual catalytic
system at 50 �C for 1 h furnishes regioselectively the γ-
arylated cyclohexene carbonitrile (8a) in 95% yield
(Scheme 2). Performing the arylation reaction with the
isomericβ,γ-unsaturatednitrile cyclohexene-2-carbonitrile

(9) led under the same conditions to 8a in 80% yield. This
somewhat lower yield was attributed to the self-condensa-
tion reaction of 9.14 This side reaction could be avoided by
adding the base TMPZnCl 3LiCl (1) to a mixture of the
nitrile 9, the aryl bromide 3c, and the Pd-catalytic system at
25 �C and stirring the reaction mixture at 50 �C for 1 h.
Under these optimized conditions, the γ-arylated nitrile 8a
is obtained in 94% yield (Scheme 2).
The arylation of alkenenitriles is similarly effective for a

range of aryl bromides bearing various functional groups
(Table 3, CO2Et, Cl, F: 3f-h) giving the γ-arylated R,β-
unsaturated nitriles 8b-d in 69-74% yield (Table 3,

Scheme 1. R-Arylation of Ethyl Esters Scheme 2. γ-Arylation of Unsaturated Nitriles (7a or 9) with an
Aryl Bromide (3c)

Table 3. γ-Arylation of Unsaturated Nitriles

aYield of isolated analytically pure product. bThe double bond is
conjugated with the aromatic ring. c 2.0 equiv of nitrile was used. d 2.5
equiv of nitrile was added over 60 min to the reaction mixture.

(12) Performing the arylation reaction at 25 �C results in extensive
addition reactions of the intermediate zinc enolate to the ester function
of 3a. Conducting the reaction at 50 �C with 2 equiv of 5a leads to the
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temperature.
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entries 1-3). Interestingly, in the case of 4- bromobenzo-
nitrile (3b), the γ-arylation occurs with concomitant mi-
gration of the double bond into conjugation with the
aromatic ring, furnishing the allylic nitrile 8e in 67% yield
(Table 3, entry 4). Cross-coupling of cyclohexene-1-carbo-
nitrile 7awith the unprotected 5-bromoindole (3i) leads to
the functionalized indole (8f) in 60% yield (Table 3, entry
5). The open-chain 2-phenyl-substituted R,β-unsaturated
nitrile (Z)-2-phenylpent-2-enenitrile (7b) reacts similarly
under the same conditions. Coupling 7b with various aryl
bromides (3b,c, 3j-l) provides the γ-arylated Z-unsatu-
rated nitriles 10a-e in 55-76% yield, maintaining the
olefin stereochemistry (Table 3, entries 6-10).
In contrast to enolate arylations, the corresponding

alkenylation is particularly rare6,15 and is unknown for
nitriles. The alkenylation of unsaturated nitriles 7b and 9

was readily achieved with TMPZnCl 3LiCl (1) with com-
plete γ-regioselectivity. Thus, the reaction of the β,γ-
unsaturated nitrile 9 (1.0 equiv) with either (E)- or (Z)-1-
iodohex-1-ene ((E)- or (Z)-11a) affords the corresponding
unsaturated nitriles (E)-12a and (Z)-12a in 85-88% yield
with perfect retention of the double bond stereochemistry
(Scheme 3). Increasing the steric demand in the alkenyl
iodide is similarly effective with the Pd-catalyzed reaction

of 1-iodocyclohex-1-ene 11b and cyclohex-2-enecarboni-
trile (9) giving the diene nitrile 12c in 64%yield (Scheme 3).
In the case of the R,β-unsaturated nitrile (7b), the

configuration of both double bonds is controlled, furnish-
ing after the reaction withE- orZ-11a the (Z,Z) and (Z,E)
skipped dienes (Z,Z)-12b and (Z,E)-12bwith high diaster-
eoselectivity (>99% (Z,Z) or (Z,E)) (Scheme 4).
In summary, we have reported a practical Pd-catalyzed

arylation of zincated nitriles and ester enolates with di-
verse, functionalized aryl bromides. Highly regioselective
γ-arylation or γ-alkenylation of R,β- or β,γ-unsaturated
nitriles faithfully translate the vinyl iodide and unsaturated
nitrile stereochemistry into a variety of γ-substituted un-
saturated nitriles.
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Scheme 3. Stereo- and Regioselective (E) and (Z) γ-Alkenyla-
tion of the Unsaturated Nitrile 9

Scheme 4. Stereo- and Regioselective (E) and (Z) γ-Alkenyla-
tion of the Unsaturated Nitrile 7a
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